# 最小费用最大流
# 说明
使用结构体,可改用命名空间
# 使用
先后四个参数分别为起点,终点,容量,费用(单项边) 先后三个参数分别为源点,汇点,费用(引用),返回的为最大流
# Tips
1、调用时,记得传入(一般设置为) 2、一定一定要重置结构体的(总点数),因此构造超级源点和超级汇点时一般编号连续
# 代码
struct MCMF {//记得重置n
struct Edge {
int from, to, cap, flow, cost; //起点,终点,容量,流量,花费
Edge(int u, int v, int c, int f, int w) : from(u), to(v), cap(c), flow(f), cost(w) {}
};
int n, m; //结点数,边数(包括反向弧),源点s,汇点t
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
bool inq[maxn]; //是否在队列中
int d[maxn]; //Bellman-Ford
int p[maxn]; //上一条弧
int a[maxn]; //可改进量
void init(int n) {
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++)
G[i].clear();
}
void addedge(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BellmanFord(int s, int t, int &flow, long long &cost)//SPFA
{
for (int i = 0; i <= n; i++)
d[i] = inf;
memset(inq, false, sizeof(inq));
d[s] = 0;
inq[s] = true;
p[s] = 0;
a[s] = inf;
queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) {
Q.push(e.to);
inq[e.to] = true;
}
}
}
}
if (d[t] == inf) return false;
flow += a[t];
cost += (long long) d[t] * (long long) a[t];
for (int u = t; u != s; u = edges[p[u]].from) {
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
return true;
}
int MinCostMaxFlow(int s, int t, long long &cost) {
int flow = 0;
cost = 0;
while (BellmanFord(s, t, flow, cost));
return flow;
}
} d;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75