# E.Gugugu's upgrade schemes
# 题意
计算贝尔数(Bell number),对结果取
# 思路
本题是原题: BZOJ 3501(CUPOJ 4415) 用贝尔三角预处理贝尔数,对于的情况,有
# 代码
#include <iostream>
using namespace std;
using ll = long long;
const int maxn = 1001;
int mod;
int f[maxn], s[maxn][maxn];
int cal(ll n) {
int m = 0, b[maxn], c[maxn], d[70];
for (int i = 0; i <= mod; ++i) {
b[i] = f[i] % mod;
}
while (n) {
d[m++] = n % mod;
n /= mod;
}
for (int i = 1; i < m; ++i)
for (int j = 1; j <= d[i]; ++j) {
for (int k = 0; k < mod; ++k) {
c[k] = (b[k] * i + b[k + 1]) % mod;
}
c[mod] = (c[0] + c[1]) % mod;
for (int k = 0; k <= mod; ++k) {
b[k] = c[k];
}
}
return c[d[0]];
}
ll bell(ll n) {
if (n < maxn)return f[n];
return (cal(n) + mod) % mod;
}
void init() {
f[0] = f[1] = s[0][0] = s[1][0] = 1, s[1][1] = 2;
for (int i = 2; i < maxn; i++) {
int j;
for (f[i] = s[i][0] = s[i - 1][i - 1], j = 1; j <= i; j++) {
s[i][j] = (s[i - 1][j - 1] + s[i][j - 1]) % mod;
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int T;
cin >> T;
while (T--) {
ll n;
cin >> n >> mod;
init();
cout << bell(n) << '\n';
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
← 概述 F. Honk's pool →